【導(dǎo)讀】在EMC設(shè)計(jì)中,電容的選型和布局是非常關(guān)鍵的。合適的電容選擇可以顯著提高設(shè)備的電磁兼容性,防止不同部分之間的相互干擾,同時(shí)確保設(shè)備在電磁環(huán)境中穩(wěn)定運(yùn)行。
濾波電容在EMC中的功能
電容在電磁兼容性(EMC)中起著重要的作用,它可以用于控制和管理電磁干擾(EMI)以及提高電子設(shè)備的抗干擾能力。以下是電容在EMC中的一些主要應(yīng)用:
1. 濾波器:電容常被用作濾波器的關(guān)鍵元件。在電子設(shè)備中,通過(guò)將電容放置在信號(hào)線或電源線上,可以有效地濾除高頻噪聲和電磁干擾,確保設(shè)備的電源和信號(hào)線不受到外部電磁波的干擾。
2. 電源解耦:在電子電路中,電容被用作電源解耦器,以確保電子元件在工作時(shí)獲得穩(wěn)定的電源。這有助于防止電源線上的噪聲傳播到關(guān)鍵的電子元件中。
3. 抑制射頻干擾:射頻(RF)干擾是一種高頻干擾,常常影響無(wú)線通信設(shè)備和其他高頻電子設(shè)備。電容可以被用來(lái)吸收和抑制這些射頻信號(hào),防止其進(jìn)入或離開(kāi)設(shè)備。
4. 防靜電放電:在某些環(huán)境中,靜電放電可能對(duì)設(shè)備造成危害。電容可以用于吸收和釋放靜電能量,從而減小靜電對(duì)設(shè)備的影響。
5. 差模噪聲濾波:在模擬電路中,電容通常用于差模信號(hào)的濾波,幫助減小噪聲對(duì)信號(hào)的影響。
6. 共模抑制:電容也被用于共模抑制電路,防止共模信號(hào)(即同時(shí)作用于兩個(gè)電路導(dǎo)線的干擾信號(hào))對(duì)設(shè)備造成影響。
在EMC設(shè)計(jì)中,電容的選型和布局是非常關(guān)鍵的。合適的電容選擇可以顯著提高設(shè)備的電磁兼容性,防止不同部分之間的相互干擾,同時(shí)確保設(shè)備在電磁環(huán)境中穩(wěn)定運(yùn)行。
電容自諧振問(wèn)題
我們用來(lái)濾波的電容器并不是理想的電容器,在系統(tǒng)中實(shí)際表現(xiàn)為理想電容與電感和電阻的串聯(lián)。如圖所示。
多層電容器(Muti-LayerCapacitor)在裝配到PCB板上時(shí)會(huì)產(chǎn)生將近5nH的寄生電感,再加上約30m歐的引線電阻,其頻率特性表現(xiàn)為如圖所示的曲線。濾波電容將不是理想的低通濾波器,實(shí)際的插入損耗特性表現(xiàn)為以自諧振點(diǎn)為中心的帶通濾波電路。
兩個(gè)電容串聯(lián)時(shí),由于ESL(等效串聯(lián)電感)和ESR(等效串聯(lián)電阻)的存在,會(huì)產(chǎn)生反諧振問(wèn)題。下圖給出了電容并聯(lián)的等效原理
下圖給出了它們的真實(shí)的幅度-頻率特性。
在將近15MHz到175MHz的一個(gè)較寬的頻帶內(nèi),并聯(lián)電容的阻抗比單獨(dú)一個(gè)大電容的阻抗要來(lái)的大,由于兩電容產(chǎn)生了諧振,在150MHz處產(chǎn)生了一個(gè)阻抗的峰值,系統(tǒng)其他部分在該頻率范圍內(nèi)產(chǎn)生的能量只能有很少的一部分被旁路到地平面。
在設(shè)計(jì)普通電路時(shí),工程師們通常關(guān)注的是電容的容值、耐壓值、封裝大小、工作溫度范圍、溫漂等參數(shù)。但是在高速電路上或電源系統(tǒng)中及一些對(duì)電容要求很高的時(shí)鐘電路中,電容已經(jīng)不僅僅是電容,是一個(gè)由等效電容、等效電阻和等效電感組成的一個(gè)電路,簡(jiǎn)單的結(jié)構(gòu)如圖所示。
電容在高速電路中的等效電路
圖中,C為所需電容,ESR為等效串聯(lián)電阻,ESL為等效串聯(lián)電感,CP為等效并聯(lián)電容。
既然這是一個(gè)電路,那么就不再是一顆獨(dú)立電容那么簡(jiǎn)單了。這個(gè)等效電路性能受很多因素的影響,在選擇這類(lèi)電容時(shí),不僅僅要關(guān)注前面提到的那些參數(shù),還要關(guān)注在特定頻率下的等效參數(shù),以Murata的1μF的電容為例,在諧振頻率點(diǎn)時(shí),對(duì)應(yīng)的等效電容為602.625nF,等效電阻為11.5356mΩ,等效電感為471.621pH。理想電容和實(shí)際電容就呈現(xiàn)出不一樣的性能。如圖所示是理想電容和實(shí)際電容的阻抗曲線。
在工程實(shí)踐中,很多工程師看到參考板設(shè)計(jì)或其他工程師設(shè)計(jì)的板子中有很多電容,覺(jué)得自己的產(chǎn)品按照他們的設(shè)計(jì)照搬就不一定不會(huì)出問(wèn)題。其實(shí)這也不是如此,因?yàn)楫a(chǎn)品應(yīng)用不同、結(jié)構(gòu)也有可能不同,這就可能使得產(chǎn)品設(shè)計(jì)的PCB層疊不一樣、通流平面也不一樣,而這些都是會(huì)引起電源系統(tǒng)的不一致。
在電源系統(tǒng)設(shè)計(jì)中,通常都會(huì)有很多類(lèi)型的電容存在,如一個(gè)電源系統(tǒng)中會(huì)有100μF、47μF、22μF、10μF、1μF、0.1μF等類(lèi)型的電容,這么多類(lèi)型的電容是否可以統(tǒng)一為某一種類(lèi)型的電容呢?如圖所示,以電容的阻抗曲線為例,進(jìn)行說(shuō)明。
增加不同電容值的電路阻抗曲線圖
通過(guò)上面兩張圖對(duì)比可以看到,如果都使用相同類(lèi)型的電容,雖然阻抗更低,但是去耦頻率范圍幾乎沒(méi)變化;如果使用不同種類(lèi)的電容,則可以增大去耦頻率范圍。
在電源系統(tǒng)中并不是電容越多越好,在某些系統(tǒng)中如果電容多了反而會(huì)導(dǎo)致新的噪聲點(diǎn)出現(xiàn)。
ESR對(duì)并聯(lián)電容幅頻特性的影響
阻抗的峰值與電容器的ESR的值成反比,隨著單板設(shè)計(jì)水平與器件性能的提高
并聯(lián)電容的阻抗的峰值將會(huì)隨著ESR的減小而增加,并聯(lián)諧振峰值的形狀與位置取決于PCB板的設(shè)計(jì)與電容的選擇。
有幾條原則應(yīng)該了解:
1、隨著ESR的減小,諧振點(diǎn)的阻抗會(huì)減小,但反諧振點(diǎn)的阻抗會(huì)增大:
2、n個(gè)相同電容并聯(lián)使用時(shí),最小陽(yáng)抗口能小干ESRIn:
3、多個(gè)電容并聯(lián)時(shí),阻抗并不一定發(fā)生在電容的諧振點(diǎn);
4、對(duì)于給定數(shù)量的電容器,比較好的選擇是電容值在一個(gè)較大的范圍內(nèi)均勻展開(kāi),各個(gè)電容值的ESR適中:比較差的選擇是僅有少量的電容值,而且電容的ESR都非常小。
ESL對(duì)并聯(lián)電容幅頻特性的影響
電容封裝和結(jié)構(gòu)不同,ESL也不同,幾種典型封裝電容的ESL如表所示。
電容的ESL與電容值一起決定電容器的諧振點(diǎn)與并聯(lián)電容器的反諧振點(diǎn)的頻率范圍。在實(shí)際的設(shè)計(jì)中,應(yīng)該盡量選用ESL小的電容器。
電容器的選擇
對(duì)于RF設(shè)計(jì)而言,陶瓷電容器、聚酯纖維電容器和聚苯乙烯薄膜電容器都是很好的選擇。對(duì)于EMI濾波器來(lái)講,對(duì)電容器的介質(zhì)材料要求并不高,常見(jiàn)的X7R、Y5V和Z5U等松散介質(zhì)都是不錯(cuò)的選擇:通常絕對(duì)的電容值、電容器的溫度系數(shù)、電壓變化系數(shù)等并不重要。不同種類(lèi)、不同容值的電容濾波范圍是不同的,下面是典型的插入損耗比對(duì)效果:
由上圖可看出,同為0805封裝的貼片陶瓷電容,001uF的電容比0.1uF的電容具有更好的高頻
濾波特性;建議板極工作頻率高于50MHz的單板(如傳輸、MUSA的多數(shù)單板)全部使用0.01uF的濾波電容,而不是我們目前大量采用的0.1uF的濾波電容。
電源輸出電容,輸入電容
我們通常把電源模塊輸入、輸出回路的電容稱為濾波電容。簡(jiǎn)單理解就是,保證輸入、輸出電源 穩(wěn)定的電容。在電源模塊中,濾波電容擺放的原則是“先大后小”。如圖2.48.1所示,濾波電容按箭頭 方向先大后小擺放。
電源設(shè)計(jì)時(shí),要注意走線和銅皮足夠?qū)?、過(guò)孔數(shù)量足夠多,保證通流能力滿足需求。寬度和過(guò)孔 數(shù)量結(jié)合電流大小來(lái)評(píng)估。
電源輸入電容
電源輸入電容與開(kāi)關(guān)環(huán)路形成一個(gè)電流環(huán)。這個(gè)電流環(huán)路的變化幅度大,Iout的幅度。頻率是開(kāi)關(guān)頻率。DCDC芯片開(kāi)關(guān)過(guò)程中產(chǎn)生,這個(gè)電流環(huán)產(chǎn)生的電流的變化,包含了較快的di/dt。
同步BUCK的方式,續(xù)流路徑要經(jīng)過(guò)芯片的GND管腳,輸入電容要接在芯片的GND和Vin之間,路徑盡可能短粗。
這個(gè)電流環(huán)面積足夠的小,這個(gè)電流環(huán)對(duì)外輻射就會(huì)越好。
去耦電容與旁路電容
1、以供應(yīng)商提供的產(chǎn)品資料上的自諧振特性為基礎(chǔ)選擇電容,使之符合設(shè)計(jì)的時(shí)鐘速率與噪聲頻率的需要。
2、在所需要的頻率范圍內(nèi)加盡可能多的電容。例如,22nF的電容的自諧振頻率將近為11MHz,有用的阻抗(Z1歐姆)范圍為6M~40MHz,你可以在該頻帶范圍內(nèi)加盡可能多的電容,以達(dá)到需要退耦的水平。
3、在盡可能靠近IC每個(gè)電源管腳的地方,至少放一個(gè)去耦電容器,以減小寄生阻抗。
4、旁路電容與IC盡可能放在同一個(gè)PCB平面上。有一個(gè)需要特別注意的地方:在兩種布局中,Vcc網(wǎng)絡(luò)都只有一個(gè)點(diǎn)連到Vcc平面。這樣做,使得IC內(nèi)外的噪聲都必須通過(guò)這個(gè)唯一的過(guò)孔走到電源平面上去,過(guò)孔的附加阻抗幫助避免了噪聲向系統(tǒng)其余部分的擴(kuò)散。
5、對(duì)于多時(shí)鐘系統(tǒng)可以將電源平面作圖3-14所示的分割,對(duì)每一個(gè)部分使用一種正確容值的電容器,被狹縫分隔的電源平面將一部分的噪聲與其他部分的敏感器件分隔開(kāi)來(lái),同時(shí)提供了中容值的分離;
6、對(duì)于時(shí)鐘頻率在一個(gè)較寬的范圍內(nèi)變化的系統(tǒng),旁路電容的選擇甚為困難。一個(gè)較好的解決方法是將兩個(gè)容值上接近2:1的電容并聯(lián)放置,這樣做可以提供一個(gè)較寬的低阻抗區(qū),和一個(gè)較寬的旁路頻率,下面這張圖可以看到,阻抗峰值仍然產(chǎn)生了,但卻小于15歐,而可用的頻率范圍(阻抗小于15歐)則擴(kuò)展到將近3.25MHz到100MHz的范圍,這種多退耦電容的方法只在一個(gè)單獨(dú)的IC需要一個(gè)較寬的旁路頻率范圍而且單個(gè)電容無(wú)法達(dá)到這一頻帶時(shí)才使用。而且,容值必須保持2:1的范圍內(nèi),以避免阻抗峰值超過(guò)可用的范圍。
高速 IC的電源引腳需要足夠多的去耦電容,最好能保證每個(gè)引腳有一個(gè)。實(shí)際設(shè)計(jì)中,如果沒(méi) 有空間擺放去耦電容,則可以酌情刪減。
IC 電源引腳的去耦電容的容值通常會(huì)比較小,如 0.1μF、0.01μF 等;對(duì)應(yīng)的封裝也比較小,如 0402封裝、0603封裝等。在擺放去耦電容時(shí),應(yīng)注意以下幾點(diǎn)。
(1)盡可能靠近電源引腳放置,否則可能起不到去耦作用。理論上講,電容有一定的去耦半徑范 圍,所以應(yīng)嚴(yán)格執(zhí)行就近原則。
(2)去耦電容到電源引腳引線盡量短,而且引線要加粗,通常線寬為8~15mil(1mil = 0.0254mm)。加粗目的在于減小引線電感,保證電源性能。
(3)去耦電容的電源、地引腳從焊盤(pán)引出線后,就近打孔,連接到電源、地平面上。該引線同樣要 加粗,過(guò)孔盡量用大孔,如能用孔徑10mil 的孔,就不用8mil的孔。
(4)保證去耦環(huán)路盡量小。去耦電容常見(jiàn)的擺放示例如圖2.48.2~圖2.48.4所示。圖2.48.2~圖2.48.4所示是SOP封裝的IC 去耦電容的擺放方式,QFP等封裝的與此類(lèi)似。
常見(jiàn)的 BGA封裝,其去耦電容通常放在 BGA下面,即背面。由于 BGA 封裝引腳密度大,因此去 耦電容一般放的不是很多,但應(yīng)盡量多擺放一些,如圖2.48.5所示。
儲(chǔ)能電容的設(shè)計(jì)
儲(chǔ)能電容可以保證在負(fù)載快速變到最重時(shí)供電電壓不會(huì)下跌。儲(chǔ)能電容可分為板極儲(chǔ)能電容、器件級(jí)儲(chǔ)能電容兩種:
A,板極儲(chǔ)能電容:保證負(fù)載快速變到最重時(shí),單板各處供電電壓不會(huì)下跌。在高頻、高速單板(以及條件允許的背板),建議均勻排布一定數(shù)量的較大容值的鉭電容(luf、10uf、22uf、33uf),以保證單板同一電壓的值保持一致。
B,器件級(jí)儲(chǔ)能電容:保證負(fù)載快速變到最重時(shí),器件周?chē)魈幑╇婋妷翰粫?huì)下跌。對(duì)于工作頻率、速率較高、功耗較大的器件,建議在其周?chē)欧?-4個(gè)較大容值的鉬電容(luf、10uf、22uf、33uf),以保證器件快速變換時(shí)其工作電壓保持不變。
儲(chǔ)能電容的設(shè)計(jì)應(yīng)該與去耦電容的設(shè)計(jì)區(qū)別開(kāi)來(lái)。有以下設(shè)計(jì)建議:
1、當(dāng)單板上具有多種供電電壓時(shí),對(duì)一種供電電壓儲(chǔ)能電容仍然只選用一種容值的電容器,一般選用表貼封裝的Tantalum電容(鉭電容),可以根據(jù)需要選擇10uf、22uf、33uf等;
2、不同供電電壓的芯片構(gòu)成一個(gè)群落,儲(chǔ)能電容在這個(gè)群落內(nèi)均勻分布,如下圖所示:
儲(chǔ)能電容的作用就是保證IC在用電時(shí),能在最短的時(shí)間內(nèi)提供電能。儲(chǔ)能電容的容值一般比較 大,對(duì)應(yīng)的封裝也比較大。在PCB中,儲(chǔ)能電容可以離器件遠(yuǎn)一些,但也不能太遠(yuǎn),如圖2.48.6所示。常見(jiàn)的儲(chǔ)能電容扇孔方式,如圖2.48.7所示。
電容扇孔、扇線原則如下。
(1)引線盡量短且加粗,這樣有較小的寄生電感。
(2)對(duì)于儲(chǔ)能電容,或者過(guò)電流比較大的器件,打孔時(shí)應(yīng)盡量多打幾個(gè)。
(3)當(dāng)然,電氣性能最好的扇孔是盤(pán)中孔。實(shí)際需要綜合考慮
濾波電路中電容的運(yùn)用
EMC濾波器通常指由 L,C構(gòu)成的低通濾波器。不同結(jié)構(gòu)的LC濾波器其區(qū)別在于電容與電感的連接方式的不同。LC濾波器的有效性不僅與其結(jié)構(gòu)有關(guān),而且還與連接網(wǎng)絡(luò)的阻抗有關(guān)。如單個(gè)電容的濾波器在高阻抗電路中效果很好,而在低阻抗電路中效果很差。傳統(tǒng)上,在濾波器兩端的端接阻抗為 50 歐姆的條件下描述濾波器的特性,但是實(shí)踐中源阻抗Zs和負(fù)載阻抗Zi又非常復(fù)雜,并且它在要抑制的頻率點(diǎn)上可能是未知的。如果濾波器的一端或兩端與電抗性元件相聯(lián)結(jié),則有可能會(huì)產(chǎn)生諧振,使某些頻率點(diǎn)的插入損耗變?yōu)椴迦朐鲆妗?/p>
如圖所示,一信號(hào)通路中,L 與 C 組成一低通濾波電路,由于在某一頻點(diǎn)的源阻抗 Zs 和負(fù)載阻抗 Zi 不可知,在使用時(shí)我們要避免參數(shù)組合后,將有用的頻率成分濾掉。在很多案例中,工程師往往比較青睞于使用102,104 容值的電容,沒(méi)有經(jīng)過(guò)計(jì)算,有時(shí)可能適得其反。
通常電容的諧振是不會(huì)單獨(dú)存在的,一般電容的自諧振是由電容與自身引腳的等效電感或連接電容的導(dǎo)線形成的電感組成。我們?cè)趯?shí)際工作中根據(jù)計(jì)算公式可知:
F=1/(2*π*√LC)
串聯(lián)結(jié)構(gòu)的LC在發(fā)生諧振時(shí),其兩端阻抗最小,相當(dāng)于短路;并聯(lián)結(jié)構(gòu)的LC在發(fā)生諧振時(shí),兩端阻抗最大,相當(dāng)于開(kāi)路。如圖 1 所示, L與C在產(chǎn)生諧振時(shí),從信號(hào)流向分析(紅色箭頭所示),它是串聯(lián)諧振,對(duì)于串聯(lián)諧振電路的特性而言,相當(dāng)于短路。如果LC的諧振頻點(diǎn)恰巧是我們想要濾除的干擾頻點(diǎn),那么L和C構(gòu)成的通路相當(dāng)于短路,就能很好地達(dá)到濾除噪聲的目的。
例如在這一信號(hào)通路中,其中有用頻率為 5MHz,電路中的L值為 1uH,我們要濾除其信號(hào)通路上10MHz的干擾信號(hào),就要避免增加的濾波電容C與L的諧振點(diǎn)落在5MHz附近,從而將有用信號(hào)濾除。如果根據(jù)經(jīng)驗(yàn)值選擇1000pF電容,通過(guò)上述諧振公式計(jì)算,計(jì)算出其諧振點(diǎn)為 5.03MHz,此時(shí)L C相當(dāng)于短路,有用頻率通過(guò)LC 直接到地,達(dá)不到我們需要的效果,反而使電路工作不正常。我們應(yīng)根據(jù)需要濾除的干擾頻率來(lái)選擇適當(dāng)?shù)碾娙葜?,通過(guò)諧振頻率公式代入計(jì)算,C 的取值為 253.3pF, 我們?nèi)∽罱咏导纯?。還需要注意的是,如果用插腳元件,引腳要盡可能的短,如果可能最好選用貼片器件,其ESL最小??梢?jiàn),正確選擇濾波器的結(jié)構(gòu)和元件參數(shù)至關(guān)重要。在實(shí)際的電路運(yùn)用中,經(jīng)驗(yàn)值固然重要,但在某些場(chǎng)合下,經(jīng)驗(yàn)值是不值得提倡的,尤其在處理有用頻率的諧波成分時(shí),一定要通過(guò)正確的方法進(jìn)行估算后再取值。
如圖所示,要濾除線束上的噪聲干擾信號(hào),優(yōu)先選用低成本的電容器,有時(shí)反而會(huì)將某些干擾噪聲引至其它路徑,從而產(chǎn)生天線效應(yīng),導(dǎo)致輻射增強(qiáng)。選用電容時(shí),要清楚地知道電容自身只起到能量的轉(zhuǎn)移,而能量并未被消耗,只有將電容接至低阻抗網(wǎng)絡(luò)時(shí),才會(huì)達(dá)到濾波的效果。在實(shí)踐工作中,電容反向轉(zhuǎn)移的特性往往會(huì)被工程師們忽略,大家都會(huì)誤認(rèn)為地永遠(yuǎn)是純凈的,只要接地,都能解決問(wèn)題,因此接地就成了整改工程師口中的萬(wàn)能良藥。如下圖所示
假設(shè)信號(hào)線上有10dBm的電磁噪聲需要濾除,通常情況下首先會(huì)想到用電容進(jìn)行濾波處理,此時(shí),電容需要轉(zhuǎn)移的地,就一定要被關(guān)注,地是否干凈,是否低阻,是否存在地彈效應(yīng),是否會(huì)引起環(huán)路效應(yīng)等等。假設(shè)地上的噪聲能量甚至比濾波對(duì)象的能量還要高,此時(shí)增加電容,就是會(huì)將地上的噪聲反向轉(zhuǎn)移至信號(hào)線上,信號(hào)線就成了最理想的輻射媒介。
共模電容
"共模電容"通常指的是差分信號(hào)中的共模電容,它是電路中一個(gè)重要的參數(shù),特別是在差分放大器和通信系統(tǒng)中。
在一個(gè)差分信號(hào)中,有兩種信號(hào):差模信號(hào)和共模信號(hào)。
1.差模信號(hào)(Differential Mode Signal): 這是兩個(gè)輸入信號(hào)的差異部分,即兩個(gè)信號(hào)的代數(shù)差。
2. 共模信號(hào)(Common Mode Signal): 這是兩個(gè)輸入信號(hào)的平均值或共同部分。
共模電容指的是信號(hào)對(duì)地的共模部分的電容。這個(gè)電容對(duì)于一些電路來(lái)說(shuō)可能是有害的,尤其是在差分放大器中。在理想情況下,差分放大器只放大差模信號(hào),而不對(duì)共模信號(hào)產(chǎn)生響應(yīng)。然而,實(shí)際電路中總會(huì)存在一些不完美,其中一個(gè)影響是共模電容。
共模電容可能導(dǎo)致一些問(wèn)題,比如:
共模噪聲(Common Mode Noise): 如果輸入信號(hào)中有共模噪聲,共模電容可能導(dǎo)致這些噪聲被放大,從而影響電路的性能。
共模抑制比(Common Mode Rejection Ratio,CMRR): 這是衡量差分放大器對(duì)共模信號(hào)的抑制能力的一個(gè)重要指標(biāo)。共模電容的存在可能會(huì)影響CMRR,使得差分放大器對(duì)共模信號(hào)的抑制能力降低。
如圖1,3為差模電容,2為共模電感,4為共模電容。
一般濾波器不單獨(dú)使用差模線圈,因?yàn)楣材k姼袃蛇吚@線不一致等原因,電感必定不會(huì)相同,因此能起到一定的差模電感的作用。如果差模干擾比較嚴(yán)重,就要追加差模線圈。
差模電容
可以看到,電容特性低頻率高阻抗高頻率低阻抗。濾波器利用電容在高頻時(shí)它的低阻抗短路掉差模千擾。(如圖下圖所示: )當(dāng)頻率為50Hz時(shí),電容阻抗趨近于無(wú)窮大,相當(dāng)于短路,不起任何衰減作用當(dāng)頻率為500kHz時(shí),電容阻抗很小,根據(jù)上式可以看到差模負(fù)載的電流衰減為趨近于0如當(dāng)頻率為500kHz時(shí)負(fù)載50歐容抗0.05歐。
此時(shí)電容分得了99.9%的差模干擾電流,而負(fù)載只分得了0.1%的差模干擾電流也就是說(shuō)500kHz時(shí),電容使得差模干擾下降了30dB。
免責(zé)聲明:本文為轉(zhuǎn)載文章,轉(zhuǎn)載此文目的在于傳遞更多信息,版權(quán)歸原作者所有。本文所用視頻、圖片、文字如涉及作品版權(quán)問(wèn)題,請(qǐng)聯(lián)系小編進(jìn)行處理。
推薦閱讀:
使用光纖測(cè)量功率元件功率循環(huán)期間的溫度波動(dòng)
實(shí)現(xiàn)最高效的數(shù)據(jù)轉(zhuǎn)換:深入了解Achronix JESD204C解決方案