- 研究車輛分散驅(qū)動的同步控制問題
- 采用PLC 解決車輛分散驅(qū)動
- 采用PLC與變頻器控制方法, 實現(xiàn)電機同步
1 前言
當車輛驅(qū)動電機采用分散驅(qū)動時, 受電機轉(zhuǎn)速不同步的影響, 可導(dǎo)致車體運行不協(xié)調(diào), 進而使電機轉(zhuǎn)速偏離正常值, 嚴重時會造成設(shè)備損壞。因此,解決車輛驅(qū)動電機在分散驅(qū)動時產(chǎn)生的電機轉(zhuǎn)速不同步問題具有現(xiàn)實意義。
本文介紹一種利用PLC 解決車輛分散驅(qū)動時電機速度同步的先進實用的控制方法。
2 問題的提出
目前, 車輛的運行設(shè)備一般采用集中驅(qū)動( 見圖1) 和分散驅(qū)動( 見圖2) 兩種方式。集中驅(qū)動變頻器與電機的關(guān)系是“一拖多”; 分散驅(qū)動時兩者的關(guān)系是“一拖一”。


[page]
3 解決方法
采用PLC 與變頻器控制方法, 實現(xiàn)多個分散驅(qū)動電機同步運行。PLC 采用西門子S7400 系列, 圖3為網(wǎng)絡(luò)拓撲圖。

取自編碼器采集的脈沖信號, 經(jīng)高速計數(shù)模塊FM350- 1 進入PLC, 轉(zhuǎn)換成電機速度數(shù)據(jù)。將兩個電機編碼器的信號相比較, 通過PID 調(diào)節(jié)模塊, 調(diào)整電機轉(zhuǎn)速差值, 給定電機2 的轉(zhuǎn)速值MW1000。
MW1000 需要轉(zhuǎn)化成變頻器能接受的信號。由于PLC的對應(yīng)4~20mA 值為0~27648, 變頻器接收范圍值為0~8192, 所以MW1000/27648×8192 送到模擬量輸出通道, 換算成變頻器能接受的電流信號, 以控制牽引電機2 的變頻器, PID 算法是工業(yè)控制中最常用的一種數(shù)學(xué)算法, 其基本算式如下:
Pou (t t) =Kp×(et) +Ki×Σ(et) +Kd×[ (et) - (et- 1) ]
式中:Kp—比例調(diào)節(jié)系數(shù)。是按比例反映系統(tǒng)的偏差,系統(tǒng)一旦出現(xiàn)偏差, 比例調(diào)節(jié)立即產(chǎn)生調(diào)節(jié)作用, 以減少誤差。
Ki —積分調(diào)節(jié)系數(shù)。使系統(tǒng)消除穩(wěn)態(tài)誤差, 提高無差度。積分作用的強弱取決于積分時間,常數(shù)Ti 越小, 積分作用就越強。Kd—微分調(diào)節(jié)系數(shù)。微分作用反映系統(tǒng)偏差信號的變化率, 具有預(yù)見性, 能預(yù)見偏差變化的趨勢, 因此能產(chǎn)生超前的控制作用, 在偏差還沒有形成之前, 已被微分調(diào)節(jié)作用消除。為了減少電源系統(tǒng)波動等因素引起的外來干擾,在編制控制算法時, 必須考慮利用積分環(huán)節(jié), 即采用一段時間內(nèi)連續(xù)穩(wěn)定的輸入信號而不是某一瞬時值的輸入信號進行PID 運算, 以消除累積誤差, 使轉(zhuǎn)數(shù)在一定的范圍內(nèi)可調(diào)。這樣, 牽引電機1 和牽引電機2 就能很好地進行同步控制且同步精度較高, 從而確保了運行機構(gòu)的穩(wěn)定性。
4 控制結(jié)果
利用 STEP7 編制PLC 上位機監(jiān)控程序,Wincc采集速度值并繪制曲線。數(shù)據(jù)提取的時間間隔為15ms。實際上牽引電機1 和牽引電機2 速度是相同的, 但為了反映牽引電機2 的跟蹤和波動情況, 在此特地將其分開, 上面是牽引電機1 的速度曲線, 下面是牽引電機2 的速度曲線(見圖4) 。牽引電機1 的速度發(fā)生變化時, 牽引電機2 就能及時地響應(yīng), 進行跟蹤, 并且能很快地達到穩(wěn)定。實驗表明, 采用PLC 和變頻器的控制方法, 能達到較高的同步要求, 響應(yīng)快、速度波動幅度較小。

該控制方法已在各種爐下車輛中應(yīng)用。實際應(yīng)用中, 走行同步起動效果明顯, 車輛運行平穩(wěn)。實踐證明, 采用PLC 解決車輛分散驅(qū)動時電機速度同步的控制方法應(yīng)用效果較好, 是一種理想的調(diào)速控制方法, 滿足了生產(chǎn)工藝要求, 減少了設(shè)備的維修維護費用, 保證了車輛發(fā)揮正常的生產(chǎn)效率, 經(jīng)濟效益顯著。隨著PLC 與變頻器控制方法的廣泛應(yīng)用, 必將更好地提高傳動系統(tǒng)對速度控制的可靠性與靈活性。